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Abstract

Background: Extracting relevant biological information from large data sets is a major challenge
in functional genomics research. Different aspects of the data hamper their biological
interpretation. For instance, 5000-fold differences in concentration for different metabolites are
present in a metabolomics data set, while these differences are not proportional to the biological
relevance of these metabolites. However, data analysis methods are not able to make this
distinction. Data pretreatment methods can correct for aspects that hinder the biological
interpretation of metabolomics data sets by emphasizing the biological information in the data set
and thus improving their biological interpretability.

Results: Different data pretreatment methods, i.e. centering, autoscaling, pareto scaling, range
scaling, vast scaling, log transformation, and power transformation, were tested on a real-life
metabolomics data set. They were found to greatly affect the outcome of the data analysis and thus
the rank of the, from a biological point of view, most important metabolites. Furthermore, the
stability of the rank, the influence of technical errors on data analysis, and the preference of data
analysis methods for selecting highly abundant metabolites were affected by the data pretreatment
method used prior to data analysis.

Conclusion: Different pretreatment methods emphasize different aspects of the data and each
pretreatment method has its own merits and drawbacks. The choice for a pretreatment method
depends on the biological question to be answered, the properties of the data set and the data
analysis method selected. For the explorative analysis of the validation data set used in this study,
autoscaling and range scaling performed better than the other pretreatment methods. That is,
range scaling and autoscaling were able to remove the dependence of the rank of the metabolites
on the average concentration and the magnitude of the fold changes and showed biologically
sensible results after PCA (principal component analysis).

In conclusion, selecting a proper data pretreatment method is an essential step in the analysis of
metabolomics data and greatly affects the metabolites that are identified to be the most important.
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Background

Functional genomics approaches are increasingly being
used for the elucidation of complex biological questions
with applications that range from human health [1] to
microbial strain improvement [2]. Functional genomics
tools have in common that they aim to measure the com-
plete biomolecule response of an organism to the envi-
ronmental conditions of interest. While transcriptomics
and proteomics aim to measure all mRNA and proteins,
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respectively, metabolomics aims to measure all metabo-
lites [3,4].

In metabolomics research, there are several steps between
the sampling of the biological condition under study and
the biological interpretation of the results of the data anal-
ysis (Figure 1). First, the biological samples are extracted
and prepared for analysis. Subsequently, different data
preprocessing steps [3,5] are applied in order to generate
'clean' data in the form of normalized peak areas that
reflect the (intracellular) metabolite concentrations.
These clean data can be used as the input for data analysis.
However, it is important to use an appropriate data pre-
treatment method before starting data analysis. Data pre-
treatment methods convert the clean data to a different
scale (for instance, relative or logarithmic scale). Hereby,
they aim to focus on the relevant (biological) information
and to reduce the influence of disturbing factors such as
measurement noise. Procedures that can be used for data
pretreatment are scaling, centering and transformations.

In this paper, we discuss different properties of metabo-
lomics data, how pretreatment methods influence these
properties, and how the effects of the data pretreatment
methods can be analyzed. The effect of data pretreatment
will be illustrated by the application of eight data pretreat-
ment methods to a metabolomics data set of Pseudomonas
putida S12 grown on four different carbon sources.

Properties of metabolome data

In metabolomics experiments, a snapshot of the metabo-
lome is obtained that reflects the cellular state, or pheno-
type, under the experimental conditions studied [3]. The
experiments that resulted in the data set used in this paper
were conducted according to an experimental design. In
an experimental design, the experimental conditions are
purposely chosen to induce variation in the area of inter-
est. The resulting variation in the metabolome is called
induced biological variation.

However, other factors are also present in metabolomics
data:

1. Differences in orders of magnitude between measured
metabolite concentrations; for example, the average con-
centration of a signal molecule is much lower than the
average concentration of a highly abundant compound
like ATP. However, from a biological point of view,
metabolites present in high concentrations are not neces-
sarily more important than those present at low concen-
trations.

2. Differences in the fold changes in metabolite concen-
tration due to the induced variation; the concentrations of
metabolites in the central metabolism are generally rela-
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tively constant, while the concentrations of metabolites
that are present in pathways of the secondary metabolism
usually show much larger differences in concentration
depending on the environmental conditions.

3. Some metabolites show large fluctuations in concentra-
tion under identical experimental conditions. This is
called uninduced biological variation.

Besides these biological factors, other effects present in the
data set are:

4. Technical variation; this originates from, for instance,
sampling, sample work-up and analytical errors.

5. Heteroscedasticity; for data analysis, it is often assumed
that the total uninduced variation resulting from biology,
sampling, and analytical measurements is symmetric
around zero with equal standard deviations. However,
this assumption is generally not true. For instance, the
standard deviation due to uninduced biological variation
depends on the average value of the measurement. This is
called heteroscedasticity, and it results in the introduction
of additional structure in the data [6,7]. Heteroscedasticity
occurs in uninduced biological variation as well as in tech-
nical variation.

The variation in the data resulting from a metabolomics
experiment is the sum of the induced variation and the
total uninduced variation. The total uninduced variation
is all the variation originating from uninduced biological
variation, sampling, sample work-up, and analytical vari-
ation. Data pretreatment focuses on the biologically rele-
vant information by emphasizing different aspects in the
clean data, for instance, the metabolite concentration
under a growth condition relative to the average concen-
tration, or relative to the biological range of that metabo-
lite. In metabolomics, data pretreatment relates the
differences in metabolite concentrations in the different
samples to differences in the phenotypes of the cells from
which these samples were obtained [3].

Data pretreatment methods

The choice for a data pretreatment method does not only
depend on the biological information to be obtained, but
also on the data analysis method chosen since different
data analysis methods focus on different aspects of the
data. For example, a clustering method focuses on the
analysis of (dis)similarities, whereas principal component
analysis (PCA) attempts to explain as much variation as
possible in as few components as possible. Changing data
properties using data pretreatment may therefore enhance
the results of a clustering method, while obscuring the
results of a PCA analysis.
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In this paper, we discuss three classes of data pretreatment
methods: (I) centering, (II) scaling and (III) transforma-
tions (Table 1).

Class I: Centering

Centering converts all the concentrations to fluctuations
around zero instead of around the mean of the metabolite
concentrations. Hereby, it adjusts for differences in the
offset between high and low abundant metabolites. It is
therefore used to focus on the fluctuating part of the data
[8,9], and leaves only the relevant variation (being the var-
iation between the samples) for analysis. Centering is
applied in combination with all the methods described
below.

Class II: Scaling

Scaling methods are data pretreatment approaches that
divide each variable by a factor, the scaling factor, which
is different for each variable. They aim to adjust for the dif-
ferences in fold differences between the different metabo-
lites by converting the data into differences in
concentration relative to the scaling factor. This often
results in the inflation of small values, which can have an
undesirable side effect as the influence of the measure-
ment error, that is usually relatively large for small values,
is increased as well.

There are two subclasses within scaling. The first class uses
a measure of the data dispersion (such as, the standard
deviation) as a scaling factor, while the second class uses
a size measure (for instance, the mean).

Scaling based on data dispersion

Scaling methods tested that use a dispersion measure for
scaling were autoscaling [9], pareto scaling [10], range
scaling [11], and vast scaling [12] (Table 1). Autoscaling,
also called unit or unit variance scaling, is commonly
applied and uses the standard deviation as the scaling fac-
tor [9]. After autoscaling, all metabolites have a standard
deviation of one and therefore the data is analyzed on the
basis of correlations instead of covariances, as is the case
with centering.

Pareto scaling [10] is very similar to autoscaling. However,
instead of the standard deviation, the square root of the
standard deviation is used as the scaling factor. Now, large
fold changes are decreased more than small fold changes,
thus the large fold changes are less dominant compared to
clean data. Furthermore, the data does not become
dimensionless as after autoscaling (Table 1).

Vast scaling [12] is an acronym of variable stability scaling
and it is an extension of autoscaling. It focuses on stable
variables, the variables that do not show strong variation,
using the standard deviation and the so-called coefficient
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Table I: Overview of the pretreatment methods used in this study. In the Unit column, the unit of the data after the data

14
pretreatment is stated. O represents the original Unit, and (-) presents dimensionless data. The mean is estimated as: X; = 7 2 x,j
J=1

and the standard deviation is estimated as: §; =

. X and X represent the data after different pretreatment steps.

Class Method Formula Unit Goal Advantages Disadvantages
| Centering X = X — X (0} Focus on the Remove the offset When data is
Yy Y ! differences and not the  from the data heteroscedastic, the
similarities in the data effect of this
pretreatment method
is not always sufficient
Il Autoscaling - ()  Compare metabolites  All metabolites become Inflation of the
561_]_ -y ! based on correlations  equally important measurement errors
Si
Range scaling X — T ()  Compare metabolites All metabolites become Inflation of the
X = y relative to the equally important. measurement errors
] (X- —x ) biological response Scaling is related to and sensitive to outliers
'max !min range biology
Pareto scaling =% o Reduce the relative Stays closer to the Sensitive to large fold
B = Y ¢ importance of large original measurement  changes
Yy \/57 values, but keep data than autoscaling
! structure partially
intact
Vast scaling _ ()  Focus on the Aims for robustness, Not suited for large
5 (xl] — X ) }l metabolites that show  can use prior group induced variation
Xij = - small fluctuations knowledge without group
Si S structure
Level scaling Ko — X ()  Focus on relative Suited for identification  Inflation of the
QNCij -y ! response of e.g. biomarkers measurement errors
X
1] Log transformation -~ 10 Log O Correct for Reduce Difficulties with values
Xij = log( Xij ) heteroscedasticity, heteroscedasticity, with large relative
R B - pseudo scaling. Make multiplicative effects standard deviation and
Xjj = Xjj — X; multiplicative models become additive zeros
additive
Power transformation 0  Correct for Reduce Choice for square root
9?1] ( X ) heteroscedasticity, heteroscedasticity, no s arbitrary.
pseudo scaling problems with small
ECU — 561,], 5Cl values

of variation (cv) as scaling factors (Table 1). The cv is
defined as the ratio of the standard deviation and the

mean: j_c—l . The use of the cv results in a higher importance
1

for metabolites with a small relative standard deviation
and a lower importance for metabolites with a large rela-
tive standard deviation. Vast scaling can be used unsuper-
vised as well as supervised. When vast scaling is applied as
a supervised method, group information about the sam-
ples is used to determine group specific cvs for scaling.

The scaling methods described above use the standard
deviation or an associated measure as scaling factor. The
standard deviation is, within statistics, a commonly used
entity to measure the data spread. In biology, however, a
different measure for data spread might be useful as well,
namely the biological range. The biological range is the
difference between the minimal and the maximal concen-
tration reached by a certain metabolite in a set of experi-
ments. Range scaling [11] uses this biological range as the
scaling factor (Table 1). A disadvantage of range scaling
with regard to the other scaling methods tested is that
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only two values are used to estimate the biological range,
while for the standard deviation all measurements are
taken into account. This makes range scaling more sensi-
tive to outliers. To increase the robustness of range scaling,
the range could also be determined by using robust range
estimators.

Scaling based on average value

Level scaling falls in the second subclass of scaling meth-
ods, which use a size measure instead of a spread measure
for the scaling. Level scaling converts the changes in
metabolite concentrations into changes relative to the
average concentration of the metabolite by using the
mean concentration as the scaling factor. The resulting
values are changes in percentages compared to the mean
concentration. As a more robust alternative, the median
could be used. Level scaling can be used when large rela-
tive changes are of specific biological interest, for exam-
ple, when stress responses are studied or when aiming to
identify relatively abundant biomarkers.

Class Ill: Transformations

Transformations are nonlinear conversions of the data
like, for instance, the log transformation and the power
transformation (Table 1). Transformations are generally
applied to correct for heteroscedasticity [7], to convert
multiplicative relations into additive relations, and to
make skewed distributions (more) symmetric. In biology,
relations between variables are not necessarily additive
but can also be multiplicative [13]. A transformation is
then necessary to identify such a relation with linear tech-
niques.

Since the log transformation and the power transforma-
tion reduce large values in the data set relatively more
than the small values, the transformations have a pseudo
scaling effect as differences between large and small values
in the data are reduced. However, the pseudo scaling effect
is not determined by the multiplication with a scaling fac-
tor as for a 'real’ scaling effect, but by the effect that these
transformations have on the original values. This pseudo
scaling effect is therefore rarely sufficient to fully adjust for
magnitude differences. Hence, it can be useful to apply a
scaling method after the transformation. However, it is
not clear how the transformation and a scaling method
influence each other with regard to the complex metabo-
lomics data.

A transformation that is often used is the log transforma-
tion (Table 1). A log transformation perfectly removes
heteroscedasticity if the relative standard deviation is con-
stant [7]. However, this is rarely the case in real life situa-
tions. A drawback of the log transformation is that it is
unable to deal with the value zero. Furthermore, its effect
on values with a large relative analytical standard devia-
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tion is problematic, usually the metabolites with a rela-
tively low concentration, as these deviations are
emphasized. These problems occur because the log trans-
formation approaches minus infinity when the value to
be transformed approaches zero.

A transformation that does not show these problems and
also has positive effects on heteroscedasticity is the power
transformation (Table 1) [13]. The power transformation
shows a similar transformation pattern as the log transfor-
mation. Hence, the power transformation can be used to
obtain results similar as after the log transformation with-
out the near zero artifacts, although the power transfor-
mation is not able to make multiplicative effects additive.

Methods

Background of the data set

P. putida S12 [14] is maintained at TNO. Cultures of P.
putida S12 were grown in batch fermentations at 30°C in
a Bioflow II (New Brunswick Scientific) bioreactor as pre-
viously described by van der Werf [15]. Samples (250 ml)
were taken from the bioreactor at an OD 600 of 10. Cells
were immediately quenched at -45°C in methanol as
described previously [16]. Prior to extracting the intracel-
lular metabolites from the cells - by chloroform extrac-
tion at -45°C [17] - internal standards were added [18]
and a sample was taken for biomass determination [19].
Subsequently, the samples were lyophilized.

GC-MS analysis

Lyophilized metabolome samples were derivatized using
a solution of ethoxyamine hydrochloride in pyridine as
the oximation reagent followed by silylation with N-tri-
methyl-N-trimethylsilylacetamide as described by [18].
GC-MS-analysis of the derivatized samples was performed
using temperature gradient from 70°C to 320°C at a rate
of 10°C/min on an Agilent 6890 N GC (Palo Alto, CA,
USA) and an Agilent 5973 mass selective detector. 1 pl
aliquots of the derivatized samples were injected in the
splitless mode on a DB5-MS capillary column. Detection
was performed using MS detection in electron impact
mode (70 eV).

Data preprocessing

The data from GC-MS analyses were deconvoluted using
the AMDIS spectral deconvolution software package
[18,20]. Zeros in the data set were replaced with small val-
ues equal to MS peak areas of 1 to allow for log transfor-
mations. The lowest peak areas in the rest of the data are
in the order of 103. The output of the AMDIS analysis, in
the form of peak identifiers and peak areas, was corrected
for the recovery of internal standards and normalized
with respect to biomass. The peaks resulting from a
known compound were combined. The samples N3, S2
and S3 were removed from the data set, as a different sam-
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Table 2: Estimation of the sources of variation in the data set.
The SS and the MS for the different sources of variation are
given, based on the experimental design presented in Figure 2.
*The technical source of variation consists of the analytical error
and the sample work-up error.

Source of variation SS MS
Analytical 0.0205 0.0102
Technical* 0.0482 0.0482
Uninduced biological 0.208 0.104
Induced biological 0.952 0.317
Total SS 1.23

ple workup protocol was followed. Furthermore, metabo-
lites detected only once in the 13 remaining experiments
were removedW. This lead to a reduced data set consisting
of 13 experiments and 140 variables expressed as peak
areas in arbitrary units (Figure 2). This data set was used
as the clean data for data pretreatment.

Data pretreatment

Data pretreatment and PCA were performed using Matlab
7 [21], the PLS Toolbox 3.0 [22], and home written m-
files. Data pretreatment was applied according to the for-
mulas in Table 1. The notation of the formulas is as fol-
lows: Matrices are presented in bold uppercase (X),
vectors in bold lowercase (t), and scalars are given in low-
ercase italic (a) or uppercase italic in case of the end of a
series i = 1...I. The data is presented in a data matrix X (I x
J) with I rows referring to the metabolites and J columns
referring to the different conditions. Element x;; therefore
holds the measurement of metabolite i in experiment j.

Vast scaling was applied unsupervised as the other data
pretreatment methods were unsupervised as well.

Data analysis

PCA was applied for the analysis of the data. PCA decom-
poses the variation of matrix X into scores T, loadings P,
and a residuals matrix E. P is an I x A matrix containing
the A selected loadings and T is a J x A matrix containing
the accompanying scores.

X =PIT+E,
where PT P = I, the identity matrix.

The number of components used (A) in the PCA analysis
was based on the scree plots and the score plots.

For ranking of the metabolites according to importance
for the A selected PCs, the contribution r of all the varia-
bles to the effects observed in the A PCs was calculated

http://www.biomedcentral.com/1471-2164/7/142

A

2 2

TAi = Z Ay - Pia
a=1

Here, r is the contribution of variable i to A components,
A, is the singular value for the ath PC and p;, is the value for
the ith variable in the loading vector belonging to the ath
PC. To allow for comparison between the different data
pretreatment methods, the values for r, were sorted in
descending order after which the comparisons were per-
formed using the rank of the metabolite in the sorted list.

The measurement errors were analyzed by estimation of
the standard deviation from the biological, analytical, and
sampling repeats. The standard deviations were binned by
calculating the averWage variance per 10 metabolites
ordered by mean value [23].

The jackknife routine was performed according to the fol-
lowing setup. In round one experiments F1, G1, N1 were
left out, in round two F2, G2, N1d were left out, and in
round three F3, G3A, were left out. By selecting these
experiments, the specific aspects of the experimental
design were maintained.

Results and discussion

Properties of the clean data

For any data set, the total variation is the sum of the con-
tributions of all the different sources of variation. The
sources of variation in the data set used in this study were
the induced biological variation, the uninduced biologi-
cal variation, the sample work-up variation, and the ana-
lytical variation. The variation resulting from the sample
work-up and the analytical analysis together was called
technical variation. The contributions of the different
sources of variation were roughly estimated from the rep-
licate measurements by calculating the sum of squares
(SS) and the mean square (MS) (Table 2). In this data set,
the largest contribution to the variation originated from
the induced biological variation, followed by the unin-
duced biological variation. The analytical variation was
the smallest source of variation (Table 2).

The effect of pretreatment on the clean data

The application of different pretreatment methods on the
clean data had a large effect on the resulting data used as
input for data analysis, as is depicted for sample G2 in Fig-
ure 3. The different pretreatment methods resulted in dif-
ferent effects. For instance autoscaling (Figure 3C) showed
many large peaks, while after pareto scaling (Figure 3D),
only a few large peaks were present. It is evident that dif-
ferent results will be obtained when the in different ways
pretreated data sets are used as the input for data analysis.
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Experimental design. The fermentations were performed in independent triplicates. Of the third glucose fermentation a
sample was taken in duplicate and of GI, NI and S| the samples were analyzed in duplicate by GC-MS. The samples of N3, S2

and S3 were not taken into account in this study.
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Peak area (Units as result from data pretreatment)
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Figure 3

Effect of data pretreatment on the original data. Original data of experiment G2 (A), and the data after centering (B),
autoscaling (C), pareto scaling (D), range scaling (E), vast scaling (F), level scaling (G), log transformation (H), and power trans-
formation (l). For units refer to Table I.
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Figure 4

Analytical and biological heteroscedasticity in the data. A: Analytical standard deviation (experiment G1), B: Biological
standard deviation (all glucose experiments), and C: Relative biological standard deviation (all glucose experiments), as a func-
tion of the metabolite concentration. To obtain a clearer overview, the standard deviations were grouped together based on
average mean value of the peak area (Binning, see Jansen et al. [23]). The first bin contained the metabolites whose peak area

was below the detection limit.

Heteroscedasticity

To determine the presence or absence of heteroscedastic-
ity in the data set, the standard deviations of the metabo-
lites of the analytical and the biological repeats were
analyzed (Figure 4). Analysis of the analytical and the
uninduced biological standard deviations showed that
heteroscedasticity was present both in the analytical error
and in the biological uninduced variation (Figure 4A and
4B). In contrast, the relative biological standard deviation
(Figure 4C), and also the relative analytical standard devi-
ation (unpublished results), showed the opposite effect.
Thus, metabolites present in high concentrations were rel-
atively influenced less by the disturbances resulting from
the different sources of uninduced variation, and were
therefore more reliable.

The effect of the log and the power transformation on the
data as a means to correct for heteroscedasticity is shown

in Figure 5. Compared to the clean data (Figure 4B), the
heteroscedasticity was reduced by the power transforma-
tion (Figure 5A), although the power transformation was
not able to remove it completely. The results can possibly
be improved further if a different power would be used
(Box and Cox [24]). Also, the log transformation (Figure
5B) was able to remove heteroscedasticity, however only
for the metabolites that are present in high concentra-
tions. In contrast, the standard deviations of metabolites
present in low concentrations were inflated after log trans-
formation due to the large relative standard deviation of
these low abundant metabolites.

Scaling approaches influence the heteroscedasticity as
well, since the variation, and thus the heteroscedasticity, is
converted into relative values to the scaling factor. It is
likely that this aspect reduces the effect of the hetero-
scedasticity on the results.
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Figure 5

Effect of data transformation on biological heteroscedasticity. A: power transformed data. B: log transformed data.
The standard deviations over all glucose experiments were ordered by the mean value of the peak areas and binned per 10
metabolites. The first bin contained the metabolites whose peak area was below the detection limit.

The effect of data pretreatment on the data analysis
results

PCA [9,25] was applied to analyze the effect on the data
analysis for the in different ways pretreated data. PCA was
chosen as it is an explorative tool that is able to visualize
how the data pretreatment methods are able to reveal dif-
ferent aspects of the data in the scores and the accompa-
nying loadings. Furthermore, it allows for identification
of the most important metabolites for the biological prob-
lem by analysis of the loadings.

The score plots were judged on two aspects by visual
inspection, namely the distance within the cluster of a
specific carbon source and the distance between the clus-
ters of different carbon sources. The loading plots show
the contributions of the measured metabolites to the sep-
aration of the experiments in the score plots. As cellular
metabolism is strongly interlinked (e.g. see [26,27]), it is
expected that the concentrations of many metabolites are
simultaneously affected when an organism is grown on a
different carbon source. Therefore, the loadings are
expected to show contributions of many different metab-
olites.

The data pretreatment methods used largely affected the
outcome of PCA analysis (Figure 6). Three groups of data
pretreatment methods could be identified in this way.
After range scaling, a clear clustering of the samples was
observed based on the carbon sources on which the sam-

pled cells were grown (Figure 6A1l). Furthermore, the
loading plots (Figure 6A2 and 6A3) indicate that many
metabolites contributed to the effects in the score plots;
which is in agreement with the biological expectation.
Autoscaling, level scaling, and log transformation resulted
in similar PCA results as after range scaling (unpublished
results).

The application of center